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Abstract

The fate of differentiation of G1E cells is de-
termined, among other things, by a hand-
ful of transcription factors (TFs) binding the
neighborhood of appropriate gene targets.
The problem of understanding the dynam-
ics of gene expression regulation is a feature
learning problem on high dimensional space
determined by the sizes of gene neighbor-
hoods, but that can be projected on a much
lower dimensional manifold whose space de-
pends on the number of TFs and the number
of ways they interact. To learn this manifold,
we train a deep convolutional network on the
activity of TF binding on 20Kb gene neigh-
borhoods labeled by binarized levels of target
gene expression. After supervised training of
the model we achieve 77% accuracy as esti-
mated by 10-fold CV.

We discuss methods for the representation
of the model knowledge back into the input
space. We use this representation to high-
light important patterns and genome loca-
tions with biological importance.

1. Introduction

ChIP-Seq is a genome-wide in vivo measurement of
transcription factor occupancy sites (TFos) (Robert-
son et al., 2007). This is the primary technique for
genome-wide annotation of transcription factor bind-
ing. Notably, it has been widely used by the human
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and mouse ENCODE projects(ENCODE Project Con-
sortium, 2011; Mouse ENCODE Consortium et al.,
2012) for the generation of hundreds of assays tar-
geting specific transcription factors (TFs) on a vari-
ety of cell lines. ChIP-Seq derived TFos correlate well
with the locations of functional genome elements, how-
ever the resolution is low and the data lacks statisti-
cal power being limited to a single cell-TF pair. It
is a challenge today to effectively use the data from
this technology for accurate prediction of functional
elements. Data noise is bound to the technology,
but more context can be used to improve accuracy if
prediction models combined data from several experi-
ments.

Here, we propose a deep convolutional architecture as
candidate.

Motivated initially by the visual cortex (Hubel &
Wiesel, 1965; 1968), deep convolutional architec-
tures(LeCun et al., 1989) have been very successful
predictive systems in digit classification, and image
and object recognition(Bengio & LeCun, 2007; LeCun
et al., 2004) and natural language processing (Col-
lobert & Weston, 2008). A convolutional neural net-
work (CNN) replicates feature detectors across all con-
nections between two layers. Thus, sharing the weights
amongst all the connections resulting in lower model
complexity and in equi-variant activities (i.e., trans-
lated input features result in translated activities).
Coupled with pooling, the model is further reduced
in size and is invariant to small translations in the in-
put features. Another fundamental property of CNNs
is that they are immune to the problem of diminish-
ing gradients and thus even deep architectures can
be trained with standard stochastic gradient descent
(Rumelhart et al., 1986). Lately, these ideas have been
implemented in other systems and applied to bigger
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images(Le et al., 2011; Lee et al., 2009).

Along with discriminative models, there has been
significant recent progress on learning deep gener-
ative models, which are concerned with computing
new low dimensional representations of the input that
will hopefully be linearly separable (Bengio, 2009).
Since 2006, when it became possible to efficiently
train these models, they have been extensive used
both as a representation learning (reviewed in (Ben-
gio, 2009)) paradigm and as a pre-training technique
to initialize weights of discriminative models, includ-
ing CNNs(Claudiu Ciresan et al., 2010). The former
strives to learn input transformations that will reveal
few important features and will hopefully be linearly
separable, the latter is generally considered a good
practice as the input conveys much more information
to the network than a label in discovering new features.
The training stage instead uses labels for fine-tuning
the category boundaries. Lately, this intuition has
been supported by training large discriminative net-
works with completely unlabeled data(Le et al., 2011).
As a side effect, pre-training helps the network also
generalize better.

In this work, we try to bring the above notions together
into a model for the activity profiles of TF's and histone
modifications during E2-induced Gle differentiation.

In the next section, we briefly describe the G1E bi-
ological model and the data. Next, we describe the
model and its performance. In the following section,
we describe the representation of the features learned
from the model and finally we provide a biological in-
terpretation of the features.

2. Experiments
2.1. The G1E biological model and data

GATA1 null erythroid cells (Gle) are derived from
mouse embryonic stem cells that can be induced to fur-
ther differentiation into the Gle-ER4 sub-line (Weiss
et al., 1997). Gle-ER4 cells resemble normal erythroid
progenitor cells, with the exception of an estrogen
activated GATA1 receptor (GATA1-ER). This allows
the controlling of GATA1-ER expression by treating
Gle-ER4 cells with estradiol (E2), which in turn will
un pause differentiation in Gle-ER4+E2 cells. Re-
semblance of Gle-ER4 and Gle-ER4+E2 cells with
normal erythroid progenitors and differentiating ery-
throblasts (Wu et al., 2011) respectively makes the
Gle-ERA4 differentiation a very good model for normal
protheoblast differentiation in mouse. Because Ery-
throid differentiation depends heavily on the GATA1
transcription factor(Weiss et al., 1994), GATA1-ER

release on Gle-ER cells is an important event that
causes changes in gene expression and alterations on
the TF binding locations and chromatin structure as
the cell differentiates into G1-ER44+E2 (Figure 1).
Whether the former induce the latter or vice-versa
is still an open question, however there is strong be-
lief that GATA1 binding drives changes in histone
modification. On this assumption, we consider here,
in addition to GATA1, the activity profiles of three
other TFs GATA2, TAL1, and CTCF which are im-
portant players in the Gle model. The GATA2 TF,
a protein similar to GATA1 that recognizes similar
motifs (WGATAR) and plays an important role as
a regulator of the differentiation process(Yamamoto
et al., 1990). The TAL1 protein which is known to
form multi protein complexes with both GATA1 and
GATA2(Wadman et al., 1997). The CTCF protein,
a highly conserved zinc finger protein implicated in
diverse regulatory functions, including transcriptional
activation/repression, insulation, imprinting, and X
chromosome inactivation(Phillips & Corces, 2009).

We process raw data from genome-wide ChIP-Seq in
vivo detection of TF binding(Cheng et al., 2009) into
a continuous signal over a 20Kb window around the
TSS of each gene (Figure 1). We further reduce the
size of the input by binning the signal into 20bp bins.
Each example has 8 gene centered TF activity profiles
(4 in G1E and 4 in G1E-ER4+E2. The GATA1 pro-
file, which is absent on the G1E cells, is set to zero)
represented as real vectors of size 2000, one for each
epigenetic feature. So, a value X;;; represents the ac-
tivity (i.e. peak enrichment) of protein j, k bins from
the TSS of gene ¢ and each sample can be thought as a
2-dimensional matrix with each row corresponding to
a TF signal profile.

After standard data preprocessing we were able to ex-
tract 406 gene neighborhoods that showed differential
feature enrichment in at least one of the tracks and a
two fold change in gene expression.

2.2. The model

The model consists of a stack of 3 convolutional layers
followed by a fully connected sigmoid layer and a soft-
max layer for the output labels. The top layer has two
outputs representing the state of the gene: induced or
repressed. We search the parameter space for optimal
number of kernels per layer, kernel size and layer size
for the top two layers, using time and cross-entropy as
optimization criteria. The resulting model is in Figure
2.

We train the model using momentum and standard
batch gradient descent. Plots of kernel weights show



Deep modeling of gene expression regulation in an Erythropoiesis model

Mouse July 2007 (NCBISTImmS) chiei124,791,026-124,621,739 (30,712 bp)
111111 000l 124800000] szes05000] 124810000] 124815000) 1248200000

7
o ]
3
GIETALLSg
GlEERe TA I

’JJ B T e ..__..L.-

BN UARRRRRRAGAR! 1 HRANT S ARGUARBNARRNAR A PARR YN

3
GIEERS GATA2 Sg

NS PN N

-4

i
Nk L1

S M LM
1. a4 ok ol L Py
f -,

156
ER4 HaKame3 Sg

P L]
s

[erar——
1 IREEDURY VT Wre FRANSIE S

W
Glegrs Hakamen s
1) TR IRERANY

L SRR REY ——maie o P

Figure 1. Gene expression levels of the Zfpm1 gene during
G1E differentiation and profiles of TF binding and histone
modification patterns.

(Figure 3 for first conv-pool layer) that the model
is able to learn features along the tracks as well as
combinatorial TF interactions. For example, the first
kernel from the left puts much of the weight in the
last two tracks and almost completely ignores the first
two ones. The bottom rows of the middle kernel (in
the first layer kernel rows correspond to input tracks)
shows an increasing weight along the track.

3. Model representation

3.1. Representation and model weight
representation

The simplest way to represent what the model has
learned in the input space is to show the best scoring
examples. However, this technique has the problem of
running into sampling problems, so below we propose
two alternative methods.

One way is to fix the output label at the top layer and
run the model backwards: a (hidden) representation is
obtained by fixing the previous representation and in-
verting the function represented by the layer. For a lo-
gistic regression layer, let f be the activation function
that transforms an input state .S into a representation

S’. Given S,

S=WhH™ = 7Y

Applying the inverse of the activation function to S
and multiplying with the pseudo-inverse of S’, give us

[8x200] [5@1x331] [I0@1x108] [lx780] [ x 300]
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Figure 2. Model architecture kernel annotations are in the
format (nr. of kernels @ height x width)/pool size.

Figure 3. Learned filters of the first ConvPool layer of the
network.

the most likely the best fit for state S that produced
S’. In the convolutional-pooling layer each value of S”,
S; ;» is one element of the element-wise product of the
welghts with a region of S, S, where | = [i % py, (1 +
1) *py] and k = [j * pp, (7 + 1) x pp]. All values of this
are are set to S ; /(|[W|*|P|), where W is the receptive
field and P = (py,pr) is the pooling range.

We can now run the model top-down and obtain a
representation of what the network has learned. This
representation gives us a way of interpreting epigenetic
features that are important in up or down regulation
of gene expression.

The input signal obtained above is of course not unique
and involves approximation. An alternative method is
to initialize the model with learned weights and ran-
dom input, then run gradient descent with respect to
the input maintaining the weights fixed. This method
has the problem of getting stuck into local optima. To
avoid this we initialize the input to the average signal
of the n best scoring examples, for an arbitrary choice
of n.

3.2. Biological interpretation

We represent the features learned by the model in the
input space by optimizing w.r.t to the input initialized
as the average signal of the best 10 examples (Figure
4).
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Figure 4. Hypothetical input tracks that maximize model
score for each label. For each track we plot the difference
between the GIEER4_E2 and G1E signals. Positive signal
in this plot corresponds to high enrichment contributing to
induced genes and vice versa for negative signal.

The model suggests a strong enrichment of GATA2 in
the G1E cells proximal to the TSS. After differenti-
ation GATA1 becomes prevalent 3-7 Kb downstream
the TSS. This interplay suggests the ability of the cells
to use GATA2 as a surrogate for GATA1 and to restore
its function afterwards.

The GATA1_ER4 and the TAL1_ER4 signals show
good agreement downstream of the TSS. This indi-
cates that induced genes show a joint enrichment for
both GATA1 and TAL1 in the ER4 cell line, as it
has already been observed elsewhere(Cheng et al.,
2009). Another analogous signal alignment, is be-
tween GATA2_G1E and TAL1_G1E. This is consistent
with GATA2 acting in the role of GATA1 in G1E cells
and recruiting TAL1. After differentiation, GATA1
replaces GATA?2 at specific binding locations, but re-
tains TAL1.

Another signal pattern that stands out is the align-
ment of GATA1 and GATA2 signals in ER4 cells at
the proximity of the TSS. This suggests supportive
action of both GATA proteins in gene inducement in
ERA4 cells.
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